Convergence of Pyramidal and Medial Brain Stem Descending Pathways Onto Macaque Cervical Spinal Interneurons

نویسندگان

  • C. Nicholas Riddle
  • Stuart N. Baker
چکیده

We investigated the control of spinal interneurons by corticospinal and medial brain stem descending tracts in two macaque monkeys. Stimulating electrodes were implanted in the left pyramidal tract (PT), and the right medial longitudinal fasciculus (MLF), which contains reticulospinal, vestibulospinal, and some tectospinal fibers. Single unit discharge was recorded from 163 interneurons in the intermediate zone of the right spinal cord (segmental levels C(6)-C(8)) in the awake state; inputs from descending pathways were assessed from the responses to stimulation through the PT and MLF electrodes. Convergent input from both pathways was the most common finding (71/163 cells); responses to PT and MLF stimulation were of similar amplitude. Interneuron discharge was also recorded while the animal performed a reach and grasp task with the right hand; the output connections of the recorded cells were determined by delivering intraspinal microstimulation (ISMS) at the recording sites. Convergent input from MLF/PT stimulation was also common when analysis was restricted to cells that increased their rate during grasp (14/23 cells) or to cells recorded at sites where ISMS elicited finger or wrist movements (23/57 cells). We conclude that medial brain stem and corticospinal descending pathways have largely overlapping effects on spinal interneurons, including those involved in the control of the hand. This may imply a more important role for the brain stem in coordinating hand movements in primates than commonly assumed; brain stem pathways could contribute to the restoration of function seen after lesions to the corticospinal tract.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Pyramidal and Medial 2 Brainstem Descending Pathways onto 3 Macaque Cervical Spinal Interneurons

7 8 1: Department of Physiology, Development & Neuroscience, University of 9 Cambridge, Cambridge. CB2 3DY. UK. 10 2: Institute of Neuroscience, Newcastle University Henry Wellcome Building, Medical 11 School, Framlington Place, Newcastle upon Tyne. NE2 4HH. UK. 12 13 14 15

متن کامل

Spinal commissural connections to motoneurons controlling the primate hand and wrist.

Left-right coordination is essential for locomotor movements and is partly mediated by spinal commissural systems. Such coordination is also essential for reaching and manipulation in primates, but the role of spinal commissural systems here has not been studied. We investigated commissural connectivity to motoneurons innervating forelimb muscles using intracellular recordings in acutely anesth...

متن کامل

Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses

KEY POINTS Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cor...

متن کامل

Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey

Damage to the corticospinal tract is a leading cause of motor disability, for example in stroke or spinal cord injury. Some function usually recovers, but whether plasticity of undamaged ipsilaterally descending corticospinal axons and/or brainstem pathways such as the reticulospinal tract contributes to recovery is unknown. Here, we examined the connectivity in these pathways to motor neurons ...

متن کامل

Can sense be made of spinal interneuron circuits?

It is increasingly clear that spinal reflex systems cannot be described in terms of simple and constant reflex actions. The extensive convergence of segmental and descending systems onto spinal interneurons suggests that spinal interneurons are not relay systems but rather form a crucial component in determining which muscles are activated during voluntary and reflex movements. The notion that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 103  شماره 

صفحات  -

تاریخ انتشار 2010